Stability of the phonon branch of Bose spectrum of the superfluid Fermi system at large momenta
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 114-117
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The phonon branch of Bose spectrum of superfluid Fermi system (Bogoliubov sound) is (investigated at $T=0$ It is shown, that every Bogoliubov sound quant (with arbitrary momentum) is stable and can not decay in several exitations with lower energy.
			
            
            
            
          
        
      @article{ZNSL_1983_131_a9,
     author = {V. A. Podolskii and V. N. Popov},
     title = {Stability of the phonon branch of {Bose} spectrum of the superfluid {Fermi} system at large momenta},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {114--117},
     publisher = {mathdoc},
     volume = {131},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a9/}
}
                      
                      
                    TY - JOUR AU - V. A. Podolskii AU - V. N. Popov TI - Stability of the phonon branch of Bose spectrum of the superfluid Fermi system at large momenta JO - Zapiski Nauchnykh Seminarov POMI PY - 1983 SP - 114 EP - 117 VL - 131 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a9/ LA - ru ID - ZNSL_1983_131_a9 ER -
%0 Journal Article %A V. A. Podolskii %A V. N. Popov %T Stability of the phonon branch of Bose spectrum of the superfluid Fermi system at large momenta %J Zapiski Nauchnykh Seminarov POMI %D 1983 %P 114-117 %V 131 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a9/ %G ru %F ZNSL_1983_131_a9
V. A. Podolskii; V. N. Popov. Stability of the phonon branch of Bose spectrum of the superfluid Fermi system at large momenta. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 114-117. http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a9/