On the theory of Maxwell liquids. II
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 106-113
Cet article a éte moissonné depuis la source Math-Net.Ru
The classical local solvability of the periodic boundary-value problem and Cauchy problem for the system \begin{gather} \frac{dv}{dt}+v_k\frac{\partial v}{\partial x_k}-\Delta u+\operatorname{grad} p=f_1,\;v=\nu_1u+\nu_2\frac{\partial u}{\partial t},\;\operatorname{div} v=0,\;\nu_1, \nu_2>0, \end{gather} is proved. The system (1) describes motions of Maxwell liquids.
@article{ZNSL_1983_131_a8,
author = {A. P. Oskolkov},
title = {On the theory of {Maxwell} {liquids.~II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {106--113},
year = {1983},
volume = {131},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a8/}
}
A. P. Oskolkov. On the theory of Maxwell liquids. II. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 106-113. http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a8/