Problem of description of all the $L$-operators for the $XXX$- and $XXZ$- $R$-matrices
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 80-87
Cet article a éte moissonné depuis la source Math-Net.Ru
An analogy between the group representation theory and the quantum inverse scattering method is discussed. A problem of description of all the $L$-operators generating an arbitrary monodromy matrix is stated. The problem is solved for the $R$-matrix of the $XXX$-model.
@article{ZNSL_1983_131_a6,
author = {A. G. Izergin and V. E. Korepin},
title = {Problem of description of all the $L$-operators for the $XXX$- and $XXZ$- $R$-matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {80--87},
year = {1983},
volume = {131},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a6/}
}
TY - JOUR AU - A. G. Izergin AU - V. E. Korepin TI - Problem of description of all the $L$-operators for the $XXX$- and $XXZ$- $R$-matrices JO - Zapiski Nauchnykh Seminarov POMI PY - 1983 SP - 80 EP - 87 VL - 131 UR - http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a6/ LA - ru ID - ZNSL_1983_131_a6 ER -
A. G. Izergin; V. E. Korepin. Problem of description of all the $L$-operators for the $XXX$- and $XXZ$- $R$-matrices. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 80-87. http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a6/