On the classical solvability of the Dlrichlet problem for the Monge–Ampère equation
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 72-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that the problem $\det(u_{xx})=f(x, u, u_x)\geqslant\nu>0$, $u|_{\partial\Omega}=\phi(x)$ is solvable in $C^{k+2+\alpha}(\bar\Omega)$, $k\geqslant2$, $0<\alpha<1$ if the natural connection between $\partial\Omega$-curvature and $|p|$-growth of $f(x, u, p)$ is valid.
@article{ZNSL_1983_131_a5,
     author = {N. M. Ivochkina},
     title = {On the classical solvability of the {Dlrichlet} problem for the {Monge{\textendash}Amp\`ere} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {72--79},
     year = {1983},
     volume = {131},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a5/}
}
TY  - JOUR
AU  - N. M. Ivochkina
TI  - On the classical solvability of the Dlrichlet problem for the Monge–Ampère equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 72
EP  - 79
VL  - 131
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a5/
LA  - ru
ID  - ZNSL_1983_131_a5
ER  - 
%0 Journal Article
%A N. M. Ivochkina
%T On the classical solvability of the Dlrichlet problem for the Monge–Ampère equation
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 72-79
%V 131
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a5/
%G ru
%F ZNSL_1983_131_a5
N. M. Ivochkina. On the classical solvability of the Dlrichlet problem for the Monge–Ampère equation. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 72-79. http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a5/