On the classical solvability of the Dlrichlet problem for the Monge--Amp\`ere equation
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 72-79

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the problem $\det(u_{xx})=f(x, u, u_x)\geqslant\nu>0$, $u|_{\partial\Omega}=\phi(x)$ is solvable in $C^{k+2+\alpha}(\bar\Omega)$, $k\geqslant2$, $0\alpha1$ if the natural connection between $\partial\Omega$-curvature and $|p|$-growth of $f(x, u, p)$ is valid.
@article{ZNSL_1983_131_a5,
     author = {N. M. Ivochkina},
     title = {On the classical solvability of the {Dlrichlet} problem for the {Monge--Amp\`ere} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {72--79},
     publisher = {mathdoc},
     volume = {131},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a5/}
}
TY  - JOUR
AU  - N. M. Ivochkina
TI  - On the classical solvability of the Dlrichlet problem for the Monge--Amp\`ere equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 72
EP  - 79
VL  - 131
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a5/
LA  - ru
ID  - ZNSL_1983_131_a5
ER  - 
%0 Journal Article
%A N. M. Ivochkina
%T On the classical solvability of the Dlrichlet problem for the Monge--Amp\`ere equation
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 72-79
%V 131
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a5/
%G ru
%F ZNSL_1983_131_a5
N. M. Ivochkina. On the classical solvability of the Dlrichlet problem for the Monge--Amp\`ere equation. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 72-79. http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a5/