On the classical solvability of the Dlrichlet problem for the Monge–Ampère equation
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 72-79
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that the problem $\det(u_{xx})=f(x, u, u_x)\geqslant\nu>0$, $u|_{\partial\Omega}=\phi(x)$ is solvable in $C^{k+2+\alpha}(\bar\Omega)$, $k\geqslant2$, $0<\alpha<1$ if the natural connection between $\partial\Omega$-curvature and $|p|$-growth of $f(x, u, p)$ is valid.
@article{ZNSL_1983_131_a5,
author = {N. M. Ivochkina},
title = {On the classical solvability of the {Dlrichlet} problem for the {Monge{\textendash}Amp\`ere} equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {72--79},
year = {1983},
volume = {131},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a5/}
}
N. M. Ivochkina. On the classical solvability of the Dlrichlet problem for the Monge–Ampère equation. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 72-79. http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a5/