On the multicomponent nonlinear Schr\"odinger equation in the case of non-vanishing boundary conditions
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 34-46

Voir la notice de l'article provenant de la source Math-Net.Ru

The inverse scattering transform is applied to the analysis of the multicomponent non-linear Schrödinger equation in the class of $s\times s$ matrix-valued functions $q(x)$, $\lim_{x\to\pm\infty}q(x)=q_\pm$, $q_+q_+^+=q_-q_-^+$. A number of peculiarities, due to the non-vanishing boundary conditions are exhibited, including: i) the existence of several chemical potentials; ii) the modifications in the integrals of motion and the Poisson brackets between the scattering data.
@article{ZNSL_1983_131_a3,
     author = {V. S. Gerdjikov and P. P. Kulish},
     title = {On the multicomponent nonlinear {Schr\"odinger} equation in the case of non-vanishing boundary conditions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {34--46},
     publisher = {mathdoc},
     volume = {131},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a3/}
}
TY  - JOUR
AU  - V. S. Gerdjikov
AU  - P. P. Kulish
TI  - On the multicomponent nonlinear Schr\"odinger equation in the case of non-vanishing boundary conditions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 34
EP  - 46
VL  - 131
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a3/
LA  - ru
ID  - ZNSL_1983_131_a3
ER  - 
%0 Journal Article
%A V. S. Gerdjikov
%A P. P. Kulish
%T On the multicomponent nonlinear Schr\"odinger equation in the case of non-vanishing boundary conditions
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 34-46
%V 131
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a3/
%G ru
%F ZNSL_1983_131_a3
V. S. Gerdjikov; P. P. Kulish. On the multicomponent nonlinear Schr\"odinger equation in the case of non-vanishing boundary conditions. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 34-46. http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a3/