On the multicomponent nonlinear Schr\"odinger equation in the case of non-vanishing boundary conditions
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 34-46
Voir la notice de l'article provenant de la source Math-Net.Ru
The inverse scattering transform is applied to the analysis of the multicomponent non-linear Schrödinger equation in the class of $s\times s$ matrix-valued functions $q(x)$, $\lim_{x\to\pm\infty}q(x)=q_\pm$, $q_+q_+^+=q_-q_-^+$. A number of peculiarities, due to the non-vanishing boundary conditions are exhibited, including: i) the existence of several chemical potentials; ii) the modifications in the integrals of motion and the Poisson brackets between the scattering data.
@article{ZNSL_1983_131_a3,
author = {V. S. Gerdjikov and P. P. Kulish},
title = {On the multicomponent nonlinear {Schr\"odinger} equation in the case of non-vanishing boundary conditions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {34--46},
publisher = {mathdoc},
volume = {131},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a3/}
}
TY - JOUR AU - V. S. Gerdjikov AU - P. P. Kulish TI - On the multicomponent nonlinear Schr\"odinger equation in the case of non-vanishing boundary conditions JO - Zapiski Nauchnykh Seminarov POMI PY - 1983 SP - 34 EP - 46 VL - 131 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a3/ LA - ru ID - ZNSL_1983_131_a3 ER -
%0 Journal Article %A V. S. Gerdjikov %A P. P. Kulish %T On the multicomponent nonlinear Schr\"odinger equation in the case of non-vanishing boundary conditions %J Zapiski Nauchnykh Seminarov POMI %D 1983 %P 34-46 %V 131 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a3/ %G ru %F ZNSL_1983_131_a3
V. S. Gerdjikov; P. P. Kulish. On the multicomponent nonlinear Schr\"odinger equation in the case of non-vanishing boundary conditions. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 34-46. http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a3/