On univalent solvability of the Cauchy problem for equations of discrete chiral fields with values in Riemennian manifolds
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 166-189 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A system of equations of discrete chiral field on infinite graph with values in complete Riemannian manifold is considered. An invariant proof of uniqueness of solution of the Cauchy problem with uniformly bounded initial velocities is given in the case when the Riemannian curvature and its gradient are bounded.
@article{ZNSL_1983_131_a14,
     author = {B. I. Shubov},
     title = {On univalent solvability of the {Cauchy} problem for equations of discrete chiral fields with values in {Riemennian} manifolds},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {166--189},
     year = {1983},
     volume = {131},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a14/}
}
TY  - JOUR
AU  - B. I. Shubov
TI  - On univalent solvability of the Cauchy problem for equations of discrete chiral fields with values in Riemennian manifolds
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 166
EP  - 189
VL  - 131
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a14/
LA  - ru
ID  - ZNSL_1983_131_a14
ER  - 
%0 Journal Article
%A B. I. Shubov
%T On univalent solvability of the Cauchy problem for equations of discrete chiral fields with values in Riemennian manifolds
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 166-189
%V 131
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a14/
%G ru
%F ZNSL_1983_131_a14
B. I. Shubov. On univalent solvability of the Cauchy problem for equations of discrete chiral fields with values in Riemennian manifolds. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 166-189. http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a14/