On univalent solvability of the Cauchy problem for equations of discrete chiral fields with values in Riemennian manifolds
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 166-189
Cet article a éte moissonné depuis la source Math-Net.Ru
A system of equations of discrete chiral field on infinite graph with values in complete Riemannian manifold is considered. An invariant proof of uniqueness of solution of the Cauchy problem with uniformly bounded initial velocities is given in the case when the Riemannian curvature and its gradient are bounded.
@article{ZNSL_1983_131_a14,
author = {B. I. Shubov},
title = {On univalent solvability of the {Cauchy} problem for equations of discrete chiral fields with values in {Riemennian} manifolds},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {166--189},
year = {1983},
volume = {131},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a14/}
}
TY - JOUR AU - B. I. Shubov TI - On univalent solvability of the Cauchy problem for equations of discrete chiral fields with values in Riemennian manifolds JO - Zapiski Nauchnykh Seminarov POMI PY - 1983 SP - 166 EP - 189 VL - 131 UR - http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a14/ LA - ru ID - ZNSL_1983_131_a14 ER -
%0 Journal Article %A B. I. Shubov %T On univalent solvability of the Cauchy problem for equations of discrete chiral fields with values in Riemennian manifolds %J Zapiski Nauchnykh Seminarov POMI %D 1983 %P 166-189 %V 131 %U http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a14/ %G ru %F ZNSL_1983_131_a14
B. I. Shubov. On univalent solvability of the Cauchy problem for equations of discrete chiral fields with values in Riemennian manifolds. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 166-189. http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a14/