A~unified Hamiltonian system on polynomial bundles and the structure of stationary problems
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 118-127

Voir la notice de l'article provenant de la source Math-Net.Ru

A relation between Hamiltonian structures on polynomial bundles of different degrees is established. A symplectic form on the space of stationary solutions, previously defined in term of the Legendre–Ostrodradsky transformation, is shown to coinside with the Kirillov form on the corresponding orbit.
@article{ZNSL_1983_131_a10,
     author = {A. G. Reiman},
     title = {A~unified {Hamiltonian} system on polynomial bundles and the structure of stationary problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {118--127},
     publisher = {mathdoc},
     volume = {131},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a10/}
}
TY  - JOUR
AU  - A. G. Reiman
TI  - A~unified Hamiltonian system on polynomial bundles and the structure of stationary problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 118
EP  - 127
VL  - 131
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a10/
LA  - ru
ID  - ZNSL_1983_131_a10
ER  - 
%0 Journal Article
%A A. G. Reiman
%T A~unified Hamiltonian system on polynomial bundles and the structure of stationary problems
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 118-127
%V 131
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a10/
%G ru
%F ZNSL_1983_131_a10
A. G. Reiman. A~unified Hamiltonian system on polynomial bundles and the structure of stationary problems. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 118-127. http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a10/