A~unified Hamiltonian system on polynomial bundles and the structure of stationary problems
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 118-127
Voir la notice de l'article provenant de la source Math-Net.Ru
A relation between Hamiltonian structures on polynomial bundles of different degrees is established. A symplectic form on the space of stationary solutions, previously defined in term of the Legendre–Ostrodradsky transformation, is shown to coinside with the Kirillov form on the corresponding orbit.
@article{ZNSL_1983_131_a10,
author = {A. G. Reiman},
title = {A~unified {Hamiltonian} system on polynomial bundles and the structure of stationary problems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {118--127},
publisher = {mathdoc},
volume = {131},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a10/}
}
TY - JOUR AU - A. G. Reiman TI - A~unified Hamiltonian system on polynomial bundles and the structure of stationary problems JO - Zapiski Nauchnykh Seminarov POMI PY - 1983 SP - 118 EP - 127 VL - 131 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a10/ LA - ru ID - ZNSL_1983_131_a10 ER -
A. G. Reiman. A~unified Hamiltonian system on polynomial bundles and the structure of stationary problems. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 4, Tome 131 (1983), pp. 118-127. http://geodesic.mathdoc.fr/item/ZNSL_1983_131_a10/