On $GB$ and $GC$-properties of generalised ellipsoids
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VIII, Tome 130 (1983), pp. 104-108

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions for the set $\left\{x=\sum x_ke_k\in H: \sum\left|\frac{x_k}{a_k}\right|^{p_k}\leqslant1\right\}$ to possess $GB$ or $GC$-property are investigated.
@article{ZNSL_1983_130_a9,
     author = {Yu. Ch. Kokayev},
     title = {On $GB$ and $GC$-properties of generalised ellipsoids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {104--108},
     publisher = {mathdoc},
     volume = {130},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_130_a9/}
}
TY  - JOUR
AU  - Yu. Ch. Kokayev
TI  - On $GB$ and $GC$-properties of generalised ellipsoids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 104
EP  - 108
VL  - 130
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_130_a9/
LA  - ru
ID  - ZNSL_1983_130_a9
ER  - 
%0 Journal Article
%A Yu. Ch. Kokayev
%T On $GB$ and $GC$-properties of generalised ellipsoids
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 104-108
%V 130
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_130_a9/
%G ru
%F ZNSL_1983_130_a9
Yu. Ch. Kokayev. On $GB$ and $GC$-properties of generalised ellipsoids. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VIII, Tome 130 (1983), pp. 104-108. http://geodesic.mathdoc.fr/item/ZNSL_1983_130_a9/