An asymptotic behaviour of local time of two-parameter random walk with finite variance
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VIII, Tome 130 (1983), pp. 36-55

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\hat t(s, t, x)$ be the local time of the Brownian sheet $w(s, t)$, $\mathbf Ew^2(s,t)=Dst$, $\hat t_n(s, t, x)=(mn)^{-1/2}\varphi([ms], [nt], [x\sqrt{mn}])$ being the number of times the recurrent random walk $\nu_{lk}=\sum_{i=1}^l\sum_{j=1}^k\xi_{ij}$ hits the point $j$ till $(m, n)$, $m=m(n)$, where $\{\xi_{ij}\}$ are i. i. d. integral-valued r. v., $\mathbf E\xi_{11}=0$, $\mathbf E\xi_{11}^2=D\infty$. The weak convergence $\hat t_n\to\hat t$ is proved and applications to investigation of the behaviour of functionals $$ \eta_n(s, t)=\sum\sum\sigma_n(l, k)f_n(\nu_{lk}),\quad(s, t)\in[0, T]^2 $$ are given ($\sigma_n$, $f_n$ are nonrandom functions).
@article{ZNSL_1983_130_a3,
     author = {A. N. Borodin},
     title = {An asymptotic behaviour of local time of two-parameter random walk with finite variance},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {36--55},
     publisher = {mathdoc},
     volume = {130},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_130_a3/}
}
TY  - JOUR
AU  - A. N. Borodin
TI  - An asymptotic behaviour of local time of two-parameter random walk with finite variance
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 36
EP  - 55
VL  - 130
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_130_a3/
LA  - ru
ID  - ZNSL_1983_130_a3
ER  - 
%0 Journal Article
%A A. N. Borodin
%T An asymptotic behaviour of local time of two-parameter random walk with finite variance
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 36-55
%V 130
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_130_a3/
%G ru
%F ZNSL_1983_130_a3
A. N. Borodin. An asymptotic behaviour of local time of two-parameter random walk with finite variance. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VIII, Tome 130 (1983), pp. 36-55. http://geodesic.mathdoc.fr/item/ZNSL_1983_130_a3/