An asymptotic behaviour of local time of two-parameter random walk with finite variance
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VIII, Tome 130 (1983), pp. 36-55
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\hat t(s, t, x)$ be the local time of the Brownian sheet $w(s, t)$, $\mathbf Ew^2(s,t)=Dst$, $\hat t_n(s, t, x)=(mn)^{-1/2}\varphi([ms], [nt], [x\sqrt{mn}])$ being the number of times the recurrent random walk $\nu_{lk}=\sum_{i=1}^l\sum_{j=1}^k\xi_{ij}$ hits the point $j$ till $(m, n)$, $m=m(n)$, where $\{\xi_{ij}\}$ are i. i. d. integral-valued r. v., $\mathbf E\xi_{11}=0$, $\mathbf E\xi_{11}^2=D\infty$. The weak convergence $\hat t_n\to\hat t$ is proved and applications to investigation of the behaviour of functionals
$$
\eta_n(s, t)=\sum\sum\sigma_n(l, k)f_n(\nu_{lk}),\quad(s, t)\in[0, T]^2
$$
are given ($\sigma_n$, $f_n$ are nonrandom functions).
			
            
            
            
          
        
      @article{ZNSL_1983_130_a3,
     author = {A. N. Borodin},
     title = {An asymptotic behaviour of local time of two-parameter random walk with finite variance},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {36--55},
     publisher = {mathdoc},
     volume = {130},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_130_a3/}
}
                      
                      
                    A. N. Borodin. An asymptotic behaviour of local time of two-parameter random walk with finite variance. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VIII, Tome 130 (1983), pp. 36-55. http://geodesic.mathdoc.fr/item/ZNSL_1983_130_a3/