Variations of random process with independent increments
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VIII, Tome 130 (1983), pp. 25-35
Voir la notice de l'article provenant de la source Math-Net.Ru
For continuous in mean $(\forall p\infty)$ random processes with independent increments $\{\xi_s\}$ relations between multiple integrals, variations (i. e. limits of sums $\sum(\xi_{t_i}-\xi_{t_{i-1}})^n$) and Ito stochastical integrals are established.
@article{ZNSL_1983_130_a2,
author = {S. G. Bobkov},
title = {Variations of random process with independent increments},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {25--35},
publisher = {mathdoc},
volume = {130},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_130_a2/}
}
S. G. Bobkov. Variations of random process with independent increments. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VIII, Tome 130 (1983), pp. 25-35. http://geodesic.mathdoc.fr/item/ZNSL_1983_130_a2/