The probabilities of large deriations on Borel sets
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VIII, Tome 130 (1983), pp. 157-166
Voir la notice de l'article provenant de la source Math-Net.Ru
Accuracy of the approximation of the probability $P_n(A_n)=\mathbf P(\frac1{\sqrt n}(X_1+\dots+X_n)\in A_n)$ by $\Phi(A_n)$ is studied for Borel sets $A_n$, $\Phi(A_n)\to0$. The necessary and sufficient conditions are obtained for $P_n(A_n)=\Phi(A_n)(1+O(\ae(\sqrt n)))$ uniformly in all sequences $\{A_n\}$ such that $\Phi(A_n)\geqslant\Phi(x:|x|>\bar\Lambda(\sqrt n))$. Here $\ae(z)\downarrow0$, $\bar\Lambda(z)\uparrow\infty$ are functions satisfying some conditions.
@article{ZNSL_1983_130_a16,
author = {L. V. Rozovskii},
title = {The probabilities of large deriations on {Borel} sets},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {157--166},
publisher = {mathdoc},
volume = {130},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_130_a16/}
}
L. V. Rozovskii. The probabilities of large deriations on Borel sets. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VIII, Tome 130 (1983), pp. 157-166. http://geodesic.mathdoc.fr/item/ZNSL_1983_130_a16/