The method of stratification for processes with independent increments
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VIII, Tome 130 (1983), pp. 109-121

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X(s)=\gamma(s)+W(\sigma(s))+\int_{-\infty}^\infty\int_0^s\ae\Pi(d\ae, ds)$ be a process with independent increments, where $\Pi$ is a Poisson measure, $W$ – Wiener process. The quasiinvariant transformations $$ G_cX(s)=\gamma(s)+W(\sigma(s))+\int_{-\infty}^\infty\int_0^sg(c, \ae, t)\Pi(d\ae, ds) $$ with suitable kernel $g$ form a one-parametric semigroup. Partition of probabilistic functional space into one-dimensional orbits of semigroup $G$ is considered. Conditional distributions and distributions of some functionals are calculated.
@article{ZNSL_1983_130_a10,
     author = {M. A. Lifshits},
     title = {The method of stratification for processes with independent increments},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {109--121},
     publisher = {mathdoc},
     volume = {130},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_130_a10/}
}
TY  - JOUR
AU  - M. A. Lifshits
TI  - The method of stratification for processes with independent increments
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 109
EP  - 121
VL  - 130
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_130_a10/
LA  - ru
ID  - ZNSL_1983_130_a10
ER  - 
%0 Journal Article
%A M. A. Lifshits
%T The method of stratification for processes with independent increments
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 109-121
%V 130
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_130_a10/
%G ru
%F ZNSL_1983_130_a10
M. A. Lifshits. The method of stratification for processes with independent increments. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part VIII, Tome 130 (1983), pp. 109-121. http://geodesic.mathdoc.fr/item/ZNSL_1983_130_a10/