On the nonlinear analogue of the WKB method and the method of the averaged lagrangian.~II
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 13, Tome 128 (1983), pp. 95-101
Voir la notice de l'article provenant de la source Math-Net.Ru
The article is a straight continuation of the previous one [2]. It deals with the problem of the unique solvability of high order equations for WKВ approximation and some relations of this problem with the properties of the averaged lagrangian.
@article{ZNSL_1983_128_a9,
author = {Ya. V. Kurylev},
title = {On the nonlinear analogue of the {WKB} method and the method of the averaged {lagrangian.~II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {95--101},
publisher = {mathdoc},
volume = {128},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a9/}
}
TY - JOUR AU - Ya. V. Kurylev TI - On the nonlinear analogue of the WKB method and the method of the averaged lagrangian.~II JO - Zapiski Nauchnykh Seminarov POMI PY - 1983 SP - 95 EP - 101 VL - 128 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a9/ LA - ru ID - ZNSL_1983_128_a9 ER -
Ya. V. Kurylev. On the nonlinear analogue of the WKB method and the method of the averaged lagrangian.~II. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 13, Tome 128 (1983), pp. 95-101. http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a9/