On the nonlinear analogue of the WKB method and the method of the averaged lagrangian. II
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 13, Tome 128 (1983), pp. 95-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article is a straight continuation of the previous one [2]. It deals with the problem of the unique solvability of high order equations for WKВ approximation and some relations of this problem with the properties of the averaged lagrangian.
@article{ZNSL_1983_128_a9,
     author = {Ya. V. Kurylev},
     title = {On the nonlinear analogue of the {WKB} method and the method of the averaged {lagrangian.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {95--101},
     year = {1983},
     volume = {128},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a9/}
}
TY  - JOUR
AU  - Ya. V. Kurylev
TI  - On the nonlinear analogue of the WKB method and the method of the averaged lagrangian. II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 95
EP  - 101
VL  - 128
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a9/
LA  - ru
ID  - ZNSL_1983_128_a9
ER  - 
%0 Journal Article
%A Ya. V. Kurylev
%T On the nonlinear analogue of the WKB method and the method of the averaged lagrangian. II
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 95-101
%V 128
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a9/
%G ru
%F ZNSL_1983_128_a9
Ya. V. Kurylev. On the nonlinear analogue of the WKB method and the method of the averaged lagrangian. II. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 13, Tome 128 (1983), pp. 95-101. http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a9/