On the nonlinear analogue of the WKB method and the method of the averaged lagrangian.~II
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 13, Tome 128 (1983), pp. 95-101

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is a straight continuation of the previous one [2]. It deals with the problem of the unique solvability of high order equations for WKВ approximation and some relations of this problem with the properties of the averaged lagrangian.
@article{ZNSL_1983_128_a9,
     author = {Ya. V. Kurylev},
     title = {On the nonlinear analogue of the {WKB} method and the method of the averaged {lagrangian.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {95--101},
     publisher = {mathdoc},
     volume = {128},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a9/}
}
TY  - JOUR
AU  - Ya. V. Kurylev
TI  - On the nonlinear analogue of the WKB method and the method of the averaged lagrangian.~II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 95
EP  - 101
VL  - 128
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a9/
LA  - ru
ID  - ZNSL_1983_128_a9
ER  - 
%0 Journal Article
%A Ya. V. Kurylev
%T On the nonlinear analogue of the WKB method and the method of the averaged lagrangian.~II
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 95-101
%V 128
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a9/
%G ru
%F ZNSL_1983_128_a9
Ya. V. Kurylev. On the nonlinear analogue of the WKB method and the method of the averaged lagrangian.~II. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 13, Tome 128 (1983), pp. 95-101. http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a9/