On the number of quasimodes of whispering gallery type
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 13, Tome 128 (1983), pp. 152-157

Voir la notice de l'article provenant de la source Math-Net.Ru

New two-sealing expansion for eigenfunctions of whispering gallery type and corresponding eigenvalues of Laplace operator with Dirichlet and Heumaan boundary conditions in the plane region is offered. Eigen functions localize in a vicinity of the boundary and are enumerated by two natural numbers $(q, p)$ where $q$ and $p$ are respectivly numbers of knots along the boundary and along the normal to it. The validity of this asymptotic expansion is ensured provided $0\leqslant p\leqslant{\rm const}\:q^{1-\varepsilon}$ for $\forall\varepsilon\in(0, 1]$ where $q\to\infty$.
@article{ZNSL_1983_128_a16,
     author = {V. V. Skripnikov},
     title = {On the number of quasimodes of whispering gallery type},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {152--157},
     publisher = {mathdoc},
     volume = {128},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a16/}
}
TY  - JOUR
AU  - V. V. Skripnikov
TI  - On the number of quasimodes of whispering gallery type
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 152
EP  - 157
VL  - 128
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a16/
LA  - ru
ID  - ZNSL_1983_128_a16
ER  - 
%0 Journal Article
%A V. V. Skripnikov
%T On the number of quasimodes of whispering gallery type
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 152-157
%V 128
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a16/
%G ru
%F ZNSL_1983_128_a16
V. V. Skripnikov. On the number of quasimodes of whispering gallery type. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 13, Tome 128 (1983), pp. 152-157. http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a16/