On the number of quasimodes of whispering gallery type
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 13, Tome 128 (1983), pp. 152-157
Voir la notice de l'article provenant de la source Math-Net.Ru
New two-sealing expansion for eigenfunctions of whispering gallery type and corresponding eigenvalues of Laplace operator with Dirichlet and Heumaan boundary conditions in the plane region is offered. Eigen functions localize in a vicinity of the boundary and are enumerated by two natural numbers $(q, p)$ where $q$ and $p$ are respectivly numbers of knots along the boundary and along the normal to it. The validity of this asymptotic expansion is ensured provided $0\leqslant p\leqslant{\rm const}\:q^{1-\varepsilon}$ for $\forall\varepsilon\in(0, 1]$ where $q\to\infty$.
@article{ZNSL_1983_128_a16,
author = {V. V. Skripnikov},
title = {On the number of quasimodes of whispering gallery type},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {152--157},
publisher = {mathdoc},
volume = {128},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a16/}
}
V. V. Skripnikov. On the number of quasimodes of whispering gallery type. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 13, Tome 128 (1983), pp. 152-157. http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a16/