On the Green function of a slightly heterogeneous waveguide
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 13, Tome 128 (1983), pp. 139-148

Voir la notice de l'article provenant de la source Math-Net.Ru

The uniform asymptotic expansion on powers of a small parameter $\varepsilon$ for a solution of the problem is $[\Delta+k^2(\varepsilon x, y)]u(x, y)=\delta(x-x_0)\delta(y-y_0)$, $u(x, 0)=u(x, H)=0$ obtained.
@article{ZNSL_1983_128_a14,
     author = {N. A. Razumovskii},
     title = {On the {Green} function of a slightly heterogeneous waveguide},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {139--148},
     publisher = {mathdoc},
     volume = {128},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a14/}
}
TY  - JOUR
AU  - N. A. Razumovskii
TI  - On the Green function of a slightly heterogeneous waveguide
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 139
EP  - 148
VL  - 128
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a14/
LA  - ru
ID  - ZNSL_1983_128_a14
ER  - 
%0 Journal Article
%A N. A. Razumovskii
%T On the Green function of a slightly heterogeneous waveguide
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 139-148
%V 128
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a14/
%G ru
%F ZNSL_1983_128_a14
N. A. Razumovskii. On the Green function of a slightly heterogeneous waveguide. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 13, Tome 128 (1983), pp. 139-148. http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a14/