On the Green function of a slightly heterogeneous waveguide
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 13, Tome 128 (1983), pp. 139-148
Voir la notice de l'article provenant de la source Math-Net.Ru
The uniform asymptotic expansion on powers of a small parameter $\varepsilon$ for a solution of the problem is $[\Delta+k^2(\varepsilon x, y)]u(x, y)=\delta(x-x_0)\delta(y-y_0)$, $u(x, 0)=u(x, H)=0$ obtained.
@article{ZNSL_1983_128_a14,
author = {N. A. Razumovskii},
title = {On the {Green} function of a slightly heterogeneous waveguide},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {139--148},
publisher = {mathdoc},
volume = {128},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a14/}
}
N. A. Razumovskii. On the Green function of a slightly heterogeneous waveguide. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 13, Tome 128 (1983), pp. 139-148. http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a14/