On the theory of linear ordinary inhomogeneous differential equations
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 13, Tome 128 (1983), pp. 6-12

Voir la notice de l'article provenant de la source Math-Net.Ru

The formula for the solution of the Cauchy problem for general linear ordinary differential equation of arbitrary order is derived.
@article{ZNSL_1983_128_a0,
     author = {V. V. Ampilov},
     title = {On the theory of linear ordinary inhomogeneous differential equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {6--12},
     publisher = {mathdoc},
     volume = {128},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a0/}
}
TY  - JOUR
AU  - V. V. Ampilov
TI  - On the theory of linear ordinary inhomogeneous differential equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 6
EP  - 12
VL  - 128
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a0/
LA  - ru
ID  - ZNSL_1983_128_a0
ER  - 
%0 Journal Article
%A V. V. Ampilov
%T On the theory of linear ordinary inhomogeneous differential equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 6-12
%V 128
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a0/
%G ru
%F ZNSL_1983_128_a0
V. V. Ampilov. On the theory of linear ordinary inhomogeneous differential equations. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 13, Tome 128 (1983), pp. 6-12. http://geodesic.mathdoc.fr/item/ZNSL_1983_128_a0/