The asymptotic of spectrum of the Maxwell's operator.
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 15, Tome 127 (1983), pp. 169-180

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic formula $N^\pm(\lambda)=(3\pi^2)^{-1}\operatorname{mes}\Omega\cdot\lambda^3+O(\lambda^2)$ is obtained for distribution's functions of positive and negative eigenvalues of the operator $\begin{pmatrix}0 i\operatorname{rot} \\ -i\operatorname{rot} 0\end{pmatrix}$ in the domain $\Omega$ with smooth boundary. It is proved under additional assumptions about properties of the geodesic billiards in that $N^\pm(\lambda)=(3\pi^2)^{-1}\operatorname{mes}\Omega\cdot\lambda^3+O(\lambda^2)$.
@article{ZNSL_1983_127_a9,
     author = {Yu. G. Safarov},
     title = {The asymptotic of spectrum of the {Maxwell's} operator.},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {169--180},
     publisher = {mathdoc},
     volume = {127},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a9/}
}
TY  - JOUR
AU  - Yu. G. Safarov
TI  - The asymptotic of spectrum of the Maxwell's operator.
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 169
EP  - 180
VL  - 127
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a9/
LA  - ru
ID  - ZNSL_1983_127_a9
ER  - 
%0 Journal Article
%A Yu. G. Safarov
%T The asymptotic of spectrum of the Maxwell's operator.
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 169-180
%V 127
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a9/
%G ru
%F ZNSL_1983_127_a9
Yu. G. Safarov. The asymptotic of spectrum of the Maxwell's operator.. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 15, Tome 127 (1983), pp. 169-180. http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a9/