The asymptotic of spectrum of the Maxwell's operator.
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 15, Tome 127 (1983), pp. 169-180
Voir la notice de l'article provenant de la source Math-Net.Ru
The asymptotic formula $N^\pm(\lambda)=(3\pi^2)^{-1}\operatorname{mes}\Omega\cdot\lambda^3+O(\lambda^2)$ is obtained for distribution's functions of positive and negative eigenvalues of the operator $\begin{pmatrix}0 i\operatorname{rot} \\ -i\operatorname{rot} 0\end{pmatrix}$ in the domain $\Omega$ with smooth boundary. It is proved under additional assumptions about properties of the geodesic billiards in that $N^\pm(\lambda)=(3\pi^2)^{-1}\operatorname{mes}\Omega\cdot\lambda^3+O(\lambda^2)$.
@article{ZNSL_1983_127_a9,
author = {Yu. G. Safarov},
title = {The asymptotic of spectrum of the {Maxwell's} operator.},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {169--180},
publisher = {mathdoc},
volume = {127},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a9/}
}
Yu. G. Safarov. The asymptotic of spectrum of the Maxwell's operator.. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 15, Tome 127 (1983), pp. 169-180. http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a9/