On the Coleman's principle concerning the stationary points of invariant functionals
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 15, Tome 127 (1983), pp. 84-102
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $G$ be a set of transformations of a topological space $X$ and $X_0$ be a set of all $G$-invariant points of $X$. Let $f$ be a functional defined on $X$ and invariant under the transformations from $G$. We find some weak conditions on $X$, $G$ and $f$ under which the following fact is true: if $x_0\in X_0$ is a stationary point of the restriction of $f$ to $X_0$, then $x_0$ is a stationary point of $f$ on the whole $X$. We also give some applications of our abstract theorems, obteined in this article to the different multidimensional variational problems, Skyrme's non-linear field model being in their number.
@article{ZNSL_1983_127_a5,
author = {L. V. Kapitanski and O. A. Ladyzhenskaya},
title = {On the {Coleman's} principle concerning the stationary points of invariant functionals},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {84--102},
year = {1983},
volume = {127},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a5/}
}
TY - JOUR AU - L. V. Kapitanski AU - O. A. Ladyzhenskaya TI - On the Coleman's principle concerning the stationary points of invariant functionals JO - Zapiski Nauchnykh Seminarov POMI PY - 1983 SP - 84 EP - 102 VL - 127 UR - http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a5/ LA - ru ID - ZNSL_1983_127_a5 ER -
L. V. Kapitanski; O. A. Ladyzhenskaya. On the Coleman's principle concerning the stationary points of invariant functionals. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 15, Tome 127 (1983), pp. 84-102. http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a5/