On existence and uniqueness theorems of regular week solutions for the first boundary-value problem for quasilinear degenerated parabolic second-order equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 15, Tome 127 (1983), pp. 49-67

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the first boundary-value problem for quasilinear degenerated $(A, \vec b)$-parabolic equations of divergent form in $Q=\Omega\times(T_1, T_2)$ where $\Omega$ is a bounded domain in $\mathbb R^n$, $n\geqslant1$. Existenceand uniqueness theorems of regular weak solutions for these equations are established.
@article{ZNSL_1983_127_a2,
     author = {A. V. Ivanov},
     title = {On existence and uniqueness theorems of regular week solutions for the first boundary-value problem for quasilinear degenerated parabolic second-order equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {49--67},
     publisher = {mathdoc},
     volume = {127},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a2/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - On existence and uniqueness theorems of regular week solutions for the first boundary-value problem for quasilinear degenerated parabolic second-order equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 49
EP  - 67
VL  - 127
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a2/
LA  - ru
ID  - ZNSL_1983_127_a2
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T On existence and uniqueness theorems of regular week solutions for the first boundary-value problem for quasilinear degenerated parabolic second-order equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 49-67
%V 127
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a2/
%G ru
%F ZNSL_1983_127_a2
A. V. Ivanov. On existence and uniqueness theorems of regular week solutions for the first boundary-value problem for quasilinear degenerated parabolic second-order equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 15, Tome 127 (1983), pp. 49-67. http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a2/