On existence and uniqueness theorems of regular week solutions for the first boundary-value problem for quasilinear degenerated parabolic second-order equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 15, Tome 127 (1983), pp. 49-67
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the first boundary-value problem for quasilinear degenerated $(A, \vec b)$-parabolic equations of divergent form in $Q=\Omega\times(T_1, T_2)$ where $\Omega$ is a bounded domain in $\mathbb R^n$, $n\geqslant1$. Existenceand uniqueness theorems of regular weak solutions for these equations are established.
@article{ZNSL_1983_127_a2,
author = {A. V. Ivanov},
title = {On existence and uniqueness theorems of regular week solutions for the first boundary-value problem for quasilinear degenerated parabolic second-order equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {49--67},
publisher = {mathdoc},
volume = {127},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a2/}
}
TY - JOUR AU - A. V. Ivanov TI - On existence and uniqueness theorems of regular week solutions for the first boundary-value problem for quasilinear degenerated parabolic second-order equations JO - Zapiski Nauchnykh Seminarov POMI PY - 1983 SP - 49 EP - 67 VL - 127 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a2/ LA - ru ID - ZNSL_1983_127_a2 ER -
%0 Journal Article %A A. V. Ivanov %T On existence and uniqueness theorems of regular week solutions for the first boundary-value problem for quasilinear degenerated parabolic second-order equations %J Zapiski Nauchnykh Seminarov POMI %D 1983 %P 49-67 %V 127 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a2/ %G ru %F ZNSL_1983_127_a2
A. V. Ivanov. On existence and uniqueness theorems of regular week solutions for the first boundary-value problem for quasilinear degenerated parabolic second-order equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 15, Tome 127 (1983), pp. 49-67. http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a2/