On the Heumann problem for second order elliptic equations in domains with edges at the boundary
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 15, Tome 127 (1983), pp. 7-48

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a weak solution of the Heumann problem for a second order elliptic equation in the a domain $\Omega\subset\mathbb R^n$ with smooth non-intersecting $n-2$-dimensional edges at the boundary belongs to a certain weighted Sobolev space Coercive estimates of the solution in the norm of this space are established.
@article{ZNSL_1983_127_a1,
     author = {W. M. Zaj\k{a}czkowski and V. A. Solonnikov},
     title = {On the {Heumann} problem for second order elliptic equations in domains with edges at the boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--48},
     publisher = {mathdoc},
     volume = {127},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a1/}
}
TY  - JOUR
AU  - W. M. Zajączkowski
AU  - V. A. Solonnikov
TI  - On the Heumann problem for second order elliptic equations in domains with edges at the boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 7
EP  - 48
VL  - 127
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a1/
LA  - ru
ID  - ZNSL_1983_127_a1
ER  - 
%0 Journal Article
%A W. M. Zajączkowski
%A V. A. Solonnikov
%T On the Heumann problem for second order elliptic equations in domains with edges at the boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 7-48
%V 127
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a1/
%G ru
%F ZNSL_1983_127_a1
W. M. Zajączkowski; V. A. Solonnikov. On the Heumann problem for second order elliptic equations in domains with edges at the boundary. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 15, Tome 127 (1983), pp. 7-48. http://geodesic.mathdoc.fr/item/ZNSL_1983_127_a1/