Completeness property for plans of sequential estimation for Wiener processes with a~drift and some uniqueness theorems
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 69-72

Voir la notice de l'article provenant de la source Math-Net.Ru

The family of $n$-dimensional Wiener processes $x_\lambda(t)=\xi(t)+\lambda t$ is consedered, $\xi(t)$ being the standard Wiener process. Let $\Gamma$ be a “plan”, defined by some closed subset $\Gamma\subset\mathbb R^n\times\mathbb R_+$ and let $\mu_\lambda$ be the corresponding probability measure on $\Gamma$ defined by the first entrance into $\Gamma$. Conditions are given for the plans to posess the completeness property, i. e. for the implication $\int_\Gamma f(x)\,\mu_\lambda(dx)=0\;\forall\lambda\Rightarrow f\equiv0$ to hold.
@article{ZNSL_1983_126_a7,
     author = {V. P. Gurarii and V. I. Matsaev},
     title = {Completeness property for plans of sequential estimation for {Wiener} processes with a~drift and some uniqueness theorems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {69--72},
     publisher = {mathdoc},
     volume = {126},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a7/}
}
TY  - JOUR
AU  - V. P. Gurarii
AU  - V. I. Matsaev
TI  - Completeness property for plans of sequential estimation for Wiener processes with a~drift and some uniqueness theorems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 69
EP  - 72
VL  - 126
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a7/
LA  - ru
ID  - ZNSL_1983_126_a7
ER  - 
%0 Journal Article
%A V. P. Gurarii
%A V. I. Matsaev
%T Completeness property for plans of sequential estimation for Wiener processes with a~drift and some uniqueness theorems
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 69-72
%V 126
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a7/
%G ru
%F ZNSL_1983_126_a7
V. P. Gurarii; V. I. Matsaev. Completeness property for plans of sequential estimation for Wiener processes with a~drift and some uniqueness theorems. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 69-72. http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a7/