Some remarks on free interpolation by bounded and slowly growing analytic functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 35-46

Voir la notice de l'article provenant de la source Math-Net.Ru

A new bounded linear operator solving the problem of free interpolation in $H^\infty$ is constructed. This operator is a modification of Jones formula. Its main advantage is the applicability to interpolation in various subclasses of $H^\infty$. A theorem connecting Hermite interpolation with Lagrange interpolation is proved.
@article{ZNSL_1983_126_a4,
     author = {S. A. Vinogradov},
     title = {Some remarks on free interpolation by bounded and slowly growing analytic functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {35--46},
     publisher = {mathdoc},
     volume = {126},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a4/}
}
TY  - JOUR
AU  - S. A. Vinogradov
TI  - Some remarks on free interpolation by bounded and slowly growing analytic functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 35
EP  - 46
VL  - 126
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a4/
LA  - ru
ID  - ZNSL_1983_126_a4
ER  - 
%0 Journal Article
%A S. A. Vinogradov
%T Some remarks on free interpolation by bounded and slowly growing analytic functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 35-46
%V 126
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a4/
%G ru
%F ZNSL_1983_126_a4
S. A. Vinogradov. Some remarks on free interpolation by bounded and slowly growing analytic functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 35-46. http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a4/