The description of closed ideals of algebra~$\lambda^{(n)}_\omega$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 202-204
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that all ideals of the space $\lambda^{(n)}_\omega$ are standard in the following two cases: 1) $n\geqslant1$, $\omega$ is a non-decreasing function; $\omega(t)/t$ is a non-increasing function; 2) $n=0$ and there exists $\alpha$, $\alpha>0$, such that $\omega(t)=O(t^\alpha)$.
@article{ZNSL_1983_126_a22,
author = {F. A. Shamoyan},
title = {The description of closed ideals of algebra~$\lambda^{(n)}_\omega$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {202--204},
publisher = {mathdoc},
volume = {126},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a22/}
}
F. A. Shamoyan. The description of closed ideals of algebra~$\lambda^{(n)}_\omega$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 202-204. http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a22/