The description of closed ideals of algebra~$\lambda^{(n)}_\omega$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 202-204

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that all ideals of the space $\lambda^{(n)}_\omega$ are standard in the following two cases: 1) $n\geqslant1$, $\omega$ is a non-decreasing function; $\omega(t)/t$ is a non-increasing function; 2) $n=0$ and there exists $\alpha$, $\alpha>0$, such that $\omega(t)=O(t^\alpha)$.
@article{ZNSL_1983_126_a22,
     author = {F. A. Shamoyan},
     title = {The description of closed ideals of algebra~$\lambda^{(n)}_\omega$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {202--204},
     publisher = {mathdoc},
     volume = {126},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a22/}
}
TY  - JOUR
AU  - F. A. Shamoyan
TI  - The description of closed ideals of algebra~$\lambda^{(n)}_\omega$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 202
EP  - 204
VL  - 126
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a22/
LA  - ru
ID  - ZNSL_1983_126_a22
ER  - 
%0 Journal Article
%A F. A. Shamoyan
%T The description of closed ideals of algebra~$\lambda^{(n)}_\omega$
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 202-204
%V 126
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a22/
%G ru
%F ZNSL_1983_126_a22
F. A. Shamoyan. The description of closed ideals of algebra~$\lambda^{(n)}_\omega$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 202-204. http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a22/