Interpolating Blaschke products and ideals of the algebra $H^\infty$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 196-201
Cet article a éte moissonné depuis la source Math-Net.Ru
For a function $f$ in $H^\infty(l^2)$ the ideals $I(f)=\{h\in H^\infty:h=\sum_{i=1}^\infty f_ig_i, g\in H^\infty(l^2)\}$ and $J(f)=\{h\in H^\infty:|h(z)|\leqslant c\|f(z)\|_2, z\in\mathbb D\}$ are considered. The functions $f$ for which there exists an interpolating Blaschke product in $I(f)$ (or $J(f)$) are characterized. Moreover there is given a characterization of functions $u$ in $H^\infty$ for which $$ f\in H^\infty(l^2), u\in J(f)\Rightarrow u\in I(f). $$ (In the case $u=1$ the latter implication is the Carleson Corona theorem).
@article{ZNSL_1983_126_a21,
author = {V. A. Tolokonnikov},
title = {Interpolating {Blaschke} products and ideals of the algebra~$H^\infty$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {196--201},
year = {1983},
volume = {126},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a21/}
}
V. A. Tolokonnikov. Interpolating Blaschke products and ideals of the algebra $H^\infty$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 196-201. http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a21/