Continuity of the harmonic projection in $L^p$-spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 191-195 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For bounded finetely connected domains on the complex plane whose boundary is piece-wise and without cusp points conditions are given ensuring boundedness of the harmonic projection on $L^p$-spaces.
@article{ZNSL_1983_126_a20,
     author = {A. A. Soloviev},
     title = {Continuity of the harmonic projection in $L^p$-spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {191--195},
     year = {1983},
     volume = {126},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a20/}
}
TY  - JOUR
AU  - A. A. Soloviev
TI  - Continuity of the harmonic projection in $L^p$-spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 191
EP  - 195
VL  - 126
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a20/
LA  - ru
ID  - ZNSL_1983_126_a20
ER  - 
%0 Journal Article
%A A. A. Soloviev
%T Continuity of the harmonic projection in $L^p$-spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 191-195
%V 126
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a20/
%G ru
%F ZNSL_1983_126_a20
A. A. Soloviev. Continuity of the harmonic projection in $L^p$-spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 191-195. http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a20/