Compact operators with power-like asymptotics of singular numbers
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 21-30

Voir la notice de l'article provenant de la source Math-Net.Ru

For a compact operator $A$ $(A\in\Upsilon_\infty)$ in a Hilbert space let $s_n(A)$, $n=1,2,\dots$, be the singular numbers of $A$ and $N(s; A)=\operatorname{card} \{n\in\mathbb N: s_n(A)>s\}$, $s>0$. Denote, for $0$ \begin{gather*} \Sigma_p=\{A\in\Upsilon_\infty: N(s, A)=O(s^{-p}), s\to0\},\\ \Sigma_p^0=\{A\in\Sigma_p: N(s, A)=o(s^{-p})\},\quad\sigma_p=\Sigma_p\setminus\Sigma_p^0. \end{gather*} The functionals $\Delta_p(A)=\limsup s^pN(s; A)$, $\delta_p(A)=\liminf s^pN(s; A)$, $s\to0$, finite for $A\in\Sigma_p$, depend on the class $a\in\sigma_p$ and not on an individual operator $A\in a$ (H. Weyl's lemma). So we may write $\Delta_p(a)$, $\delta_p(a)$, $a\in\sigma_p$. Some results for the functionals $\Delta_p$, $\delta_p$ (and similar functionals for positive and negative eigenvalues in the case $a=a^*=\{A^*:A\in a\}$) are obtained. In particular: I. For $a_1, a_2\in\sigma_p$ $[\Delta_p(a_1+a_2)]^{\frac1{p+1}}\leqslant[\Delta_p(a_1)]^{\frac1{p+1}}+[\Delta_p(a_2)]^{\frac1{p+1}}$. II. Let $a_1, a_2\in\sigma_p$, $a_1^*a_2=a_1a_2^*=0$, $\delta_p(a_i)=\Delta_p(a_i)$, $i=1, 2$. Then $\delta_p(a_1+a_2)=\Delta_p(a_1+a_2)=\Delta_p(a_1)+\Delta_p(a_2)$.
@article{ZNSL_1983_126_a2,
     author = {M. Sh. Birman and M. Z. Solomyak},
     title = {Compact operators with power-like asymptotics of singular numbers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {21--30},
     publisher = {mathdoc},
     volume = {126},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a2/}
}
TY  - JOUR
AU  - M. Sh. Birman
AU  - M. Z. Solomyak
TI  - Compact operators with power-like asymptotics of singular numbers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 21
EP  - 30
VL  - 126
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a2/
LA  - ru
ID  - ZNSL_1983_126_a2
ER  - 
%0 Journal Article
%A M. Sh. Birman
%A M. Z. Solomyak
%T Compact operators with power-like asymptotics of singular numbers
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 21-30
%V 126
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a2/
%G ru
%F ZNSL_1983_126_a2
M. Sh. Birman; M. Z. Solomyak. Compact operators with power-like asymptotics of singular numbers. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 21-30. http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a2/