A~boundary uniqueness theorem for regular functions with bounded integral of Dirichlet type
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 180-190
Voir la notice de l'article provenant de la source Math-Net.Ru
Closed sets of uniqueness on $\partial U$ for a class of analytical functions in the unit circle $U$ for which
$$
\iint_U|f'(z)|^2h(z)\,d\sigma+\infty.
$$
are considered in the paper.
The main result of the paper makes it possible to construct rather small closed sets of uniqueness for the class of functions involved.
@article{ZNSL_1983_126_a19,
author = {S. P. Preobrazenskii},
title = {A~boundary uniqueness theorem for regular functions with bounded integral of {Dirichlet} type},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {180--190},
publisher = {mathdoc},
volume = {126},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a19/}
}
TY - JOUR AU - S. P. Preobrazenskii TI - A~boundary uniqueness theorem for regular functions with bounded integral of Dirichlet type JO - Zapiski Nauchnykh Seminarov POMI PY - 1983 SP - 180 EP - 190 VL - 126 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a19/ LA - ru ID - ZNSL_1983_126_a19 ER -
S. P. Preobrazenskii. A~boundary uniqueness theorem for regular functions with bounded integral of Dirichlet type. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 180-190. http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a19/