A boundary uniqueness theorem for regular functions with bounded integral of Dirichlet type
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 180-190
Cet article a éte moissonné depuis la source Math-Net.Ru
Closed sets of uniqueness on $\partial U$ for a class of analytical functions in the unit circle $U$ for which $$ \iint_U|f'(z)|^2h(z)\,d\sigma<+\infty. $$ are considered in the paper. The main result of the paper makes it possible to construct rather small closed sets of uniqueness for the class of functions involved.
@article{ZNSL_1983_126_a19,
author = {S. P. Preobrazenskii},
title = {A~boundary uniqueness theorem for regular functions with bounded integral of {Dirichlet} type},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {180--190},
year = {1983},
volume = {126},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a19/}
}
S. P. Preobrazenskii. A boundary uniqueness theorem for regular functions with bounded integral of Dirichlet type. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 180-190. http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a19/