A~boundary uniqueness theorem for regular functions with bounded integral of Dirichlet type
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 180-190

Voir la notice de l'article provenant de la source Math-Net.Ru

Closed sets of uniqueness on $\partial U$ for a class of analytical functions in the unit circle $U$ for which $$ \iint_U|f'(z)|^2h(z)\,d\sigma+\infty. $$ are considered in the paper. The main result of the paper makes it possible to construct rather small closed sets of uniqueness for the class of functions involved.
@article{ZNSL_1983_126_a19,
     author = {S. P. Preobrazenskii},
     title = {A~boundary uniqueness theorem for regular functions with bounded integral of {Dirichlet} type},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {180--190},
     publisher = {mathdoc},
     volume = {126},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a19/}
}
TY  - JOUR
AU  - S. P. Preobrazenskii
TI  - A~boundary uniqueness theorem for regular functions with bounded integral of Dirichlet type
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 180
EP  - 190
VL  - 126
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a19/
LA  - ru
ID  - ZNSL_1983_126_a19
ER  - 
%0 Journal Article
%A S. P. Preobrazenskii
%T A~boundary uniqueness theorem for regular functions with bounded integral of Dirichlet type
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 180-190
%V 126
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a19/
%G ru
%F ZNSL_1983_126_a19
S. P. Preobrazenskii. A~boundary uniqueness theorem for regular functions with bounded integral of Dirichlet type. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 180-190. http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a19/