Invariant subspaces for Toeplitz operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 170-179

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the invariant subspace problem for Toeplitz operators. Let $\Gamma$ be a Lipschitz arc on the complex plane, $f$ be a non-constant continuous function on the unit circle. If there exists an open disc $D$ such that $f(\mathbb T)\cap\Gamma\cap D\ne\varnothing$, $f(\mathbb T)\cap(\bar D\setminus\Gamma)\ne\varnothing$ and if the modulus of continuity $\omega_f$ of $f$ satisfies the inequality $$ \int\limits_\bigcirc\frac{\omega_f(t)}{t\log\frac1t}\,dt+\infty, $$ then non-trivial hyperinvariant subspaces for the Toeplitz operator $T_f$ on the Hardy class $H^2$ are proved to exist. For the proof of this result the Lubich–Matsaev theorem is used.
@article{ZNSL_1983_126_a18,
     author = {V. V. Peller},
     title = {Invariant subspaces for {Toeplitz} operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {170--179},
     publisher = {mathdoc},
     volume = {126},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a18/}
}
TY  - JOUR
AU  - V. V. Peller
TI  - Invariant subspaces for Toeplitz operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 170
EP  - 179
VL  - 126
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a18/
LA  - ru
ID  - ZNSL_1983_126_a18
ER  - 
%0 Journal Article
%A V. V. Peller
%T Invariant subspaces for Toeplitz operators
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 170-179
%V 126
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a18/
%G ru
%F ZNSL_1983_126_a18
V. V. Peller. Invariant subspaces for Toeplitz operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 170-179. http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a18/