Invariant subspaces for Toeplitz operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 170-179
Voir la notice de l'article provenant de la source Math-Net.Ru
The article is devoted to the invariant subspace problem for Toeplitz operators.
Let $\Gamma$ be a Lipschitz arc on the complex plane, $f$ be a non-constant continuous function on the unit circle. If there exists an open disc $D$ such that $f(\mathbb T)\cap\Gamma\cap D\ne\varnothing$, $f(\mathbb T)\cap(\bar D\setminus\Gamma)\ne\varnothing$ and if the modulus of continuity $\omega_f$ of $f$ satisfies the inequality
$$
\int\limits_\bigcirc\frac{\omega_f(t)}{t\log\frac1t}\,dt+\infty,
$$
then non-trivial hyperinvariant subspaces for the Toeplitz operator $T_f$ on the Hardy class $H^2$ are proved to exist.
For the proof of this result the Lubich–Matsaev theorem is used.
@article{ZNSL_1983_126_a18,
author = {V. V. Peller},
title = {Invariant subspaces for {Toeplitz} operators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {170--179},
publisher = {mathdoc},
volume = {126},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a18/}
}
V. V. Peller. Invariant subspaces for Toeplitz operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 170-179. http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a18/