Designs for calculating the spectral multiplicity of orthogonal sums
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 150-159

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ and $B$ be operators in spaces $X$ and $Y$ respectively and suppose that $B$ has a “rich” system of sets $\Delta$, $\Delta\subset\mathbb C$ with $Y(\Delta)$ dense in $Y$, where $Y(\Delta)=\{y\in Y:\|p(B)y\|\leqslant C_y\sup_\Delta|p|\text{ for any complex polynomial }p\}$. Then $\mu_{A\oplus B}=\max(\mu_A, \mu_B)=\mu_A$ ($\mu_A$ denotes the spectral multiplicity of an operator $A$ i. e. the number $\min\{\dim L:\operatorname{span}(A^nL:n\geqslant0)=X\}$). For example, if $B$ is a Toeplitz operator $T\bar g$ with $g\in H^\infty$, $g\not\equiv\mathrm{const}$ and if, moreover, $g(\mathbb D)\setminus\text {\{polynomially convex hull of the spectrum of }A\}\ne\varnothing$ then $\mu_{A\oplus T\bar g}=\mu_A$. To the contrary, if $A=T_f$ with $f\in H^\infty$ and $g(\mathbb D)\subset f(\mathbb D)$ then (under some additional regularity assumptions on $f$) we have $\mu_{Tf\oplus Tg}=\mu_{Tf}+\mu_{Tg}$. We give also some examples of univalent and essentially univalent functions $f$ $(f\in H^\infty)$ with $\mu_{Tf}>1$.
@article{ZNSL_1983_126_a16,
     author = {N. K. Nikol'skii},
     title = {Designs for calculating the spectral multiplicity of orthogonal sums},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {150--159},
     publisher = {mathdoc},
     volume = {126},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a16/}
}
TY  - JOUR
AU  - N. K. Nikol'skii
TI  - Designs for calculating the spectral multiplicity of orthogonal sums
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 150
EP  - 159
VL  - 126
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a16/
LA  - ru
ID  - ZNSL_1983_126_a16
ER  - 
%0 Journal Article
%A N. K. Nikol'skii
%T Designs for calculating the spectral multiplicity of orthogonal sums
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 150-159
%V 126
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a16/
%G ru
%F ZNSL_1983_126_a16
N. K. Nikol'skii. Designs for calculating the spectral multiplicity of orthogonal sums. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 150-159. http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a16/