Point unitary spectrum of almost unitary operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 143-149
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $E$ be a subset of the unit circle $\mathbb T$. There exists an almost unitary operator $L$ such that $E=\sigma_p(L)\cap\mathbb T$ if $E$ is a countable union of Carleson sets. (An operator $L$ is called almost unitary if it is a sum of unitary and nuclear operators).
@article{ZNSL_1983_126_a15,
author = {N. G. Makarov},
title = {Point unitary spectrum of almost unitary operators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {143--149},
publisher = {mathdoc},
volume = {126},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a15/}
}
N. G. Makarov. Point unitary spectrum of almost unitary operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 143-149. http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a15/