Point unitary spectrum of almost unitary operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 143-149

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be a subset of the unit circle $\mathbb T$. There exists an almost unitary operator $L$ such that $E=\sigma_p(L)\cap\mathbb T$ if $E$ is a countable union of Carleson sets. (An operator $L$ is called almost unitary if it is a sum of unitary and nuclear operators).
@article{ZNSL_1983_126_a15,
     author = {N. G. Makarov},
     title = {Point unitary spectrum of almost unitary operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {143--149},
     publisher = {mathdoc},
     volume = {126},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a15/}
}
TY  - JOUR
AU  - N. G. Makarov
TI  - Point unitary spectrum of almost unitary operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 143
EP  - 149
VL  - 126
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a15/
LA  - ru
ID  - ZNSL_1983_126_a15
ER  - 
%0 Journal Article
%A N. G. Makarov
%T Point unitary spectrum of almost unitary operators
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 143-149
%V 126
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a15/
%G ru
%F ZNSL_1983_126_a15
N. G. Makarov. Point unitary spectrum of almost unitary operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 143-149. http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a15/