Functions with finite Dirichlet integral in a~domain with a~cusp at the boundary
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 117-137

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega$, be a bounded domain in $\mathbb R^2$, $n>2$, with inward or outward cusps at $\partial\Omega$, and let $H^1(\Omega)$ be the space of functions with finite Dirichlet integral. Our main result is a characterization of the space of traces of functions in $H^1(\Omega)$. As a corollary we obtain the existence of a continuous linear extension mapping: $H^1(\Omega)\to H^1(\mathbb R^n)$ provided the domain has an inward cusp. (It is well known that the latter fails for $n=2$).
@article{ZNSL_1983_126_a13,
     author = {V. G. Maz'ya},
     title = {Functions with finite {Dirichlet} integral in a~domain with a~cusp at the boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {117--137},
     publisher = {mathdoc},
     volume = {126},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a13/}
}
TY  - JOUR
AU  - V. G. Maz'ya
TI  - Functions with finite Dirichlet integral in a~domain with a~cusp at the boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 117
EP  - 137
VL  - 126
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a13/
LA  - ru
ID  - ZNSL_1983_126_a13
ER  - 
%0 Journal Article
%A V. G. Maz'ya
%T Functions with finite Dirichlet integral in a~domain with a~cusp at the boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 117-137
%V 126
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a13/
%G ru
%F ZNSL_1983_126_a13
V. G. Maz'ya. Functions with finite Dirichlet integral in a~domain with a~cusp at the boundary. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 117-137. http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a13/