Projections onto the set of Hankel matrices
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 109-116
Voir la notice de l'article provenant de la source Math-Net.Ru
The article is devoted to the estimates from below of the norms of projections onto the set of $(n\times n)$ Hankel matrices. Let $B_N$ be the set of operators $T\sim\{t_{jk}\}_{j, k\geqslant0}$ on $l^2$ such that $t_{jk}=0$ for $k+j>N$ and $\mathrm{Hank}_N$ be the subspace of $B_N$ consisting of those operators $T$ for which $t_{jk}=c_{j+k}$ (Hankel matrices). The numbers $\alpha_N$ are defined as the infimum of the norms of projections from $B_N$ onto$\mathrm{Hank}_N$. The main result of the article claims that $c_1\left(\frac{\log N}{\log\log N}\right)^{1/2}\leqslant\alpha_N\leqslant c_2(\log N)^{1/2}$.
@article{ZNSL_1983_126_a12,
author = {S. V. Kislyakov},
title = {Projections onto the set of {Hankel} matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {109--116},
publisher = {mathdoc},
volume = {126},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a12/}
}
S. V. Kislyakov. Projections onto the set of Hankel matrices. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 109-116. http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a12/