Щхе existence Fragmen--Lindelof function and some conditions of quasi-analyticity
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 97-108

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E\subset\mathbb R^n$, $E=\bar E$, $\Omega=\mathbb R^{n+1}\setminus E$. Positive harmonic functions in $\Omega$ vanishing on $E$, form the cone $\mathcal P_E$. It is known, that $1\leqslant\dim\mathcal P_E\leqslant2$. It is proved, that $\int_{\mathbb R^n}\frac{\rho(x, E)}{(1+x^2)^{\frac{n+1}2}}=+\infty\Rightarrow\dim \mathcal P_E=1$ ($\rho(x, E)=\inf_{t\in E}|x-t|$). The connection between $\dim\mathcal P_E$ and the existence of a non-zero measure on $E$ whose Fourier transform vanishes pn an interval is investigated. In the case $n=1$ it is proved, that $\int_{C_E}\frac{dt}{1+|t|}+\infty\Rightarrow\dim \mathcal P_E=2$.
@article{ZNSL_1983_126_a11,
     author = {P. P. Kargaev},
     title = {{\CYRSHCH}{\cyrh}{\cyre} existence {Fragmen--Lindelof} function and some conditions of quasi-analyticity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {97--108},
     publisher = {mathdoc},
     volume = {126},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a11/}
}
TY  - JOUR
AU  - P. P. Kargaev
TI  - Щхе existence Fragmen--Lindelof function and some conditions of quasi-analyticity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 97
EP  - 108
VL  - 126
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a11/
LA  - ru
ID  - ZNSL_1983_126_a11
ER  - 
%0 Journal Article
%A P. P. Kargaev
%T Щхе existence Fragmen--Lindelof function and some conditions of quasi-analyticity
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 97-108
%V 126
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a11/
%G ru
%F ZNSL_1983_126_a11
P. P. Kargaev. Щхе existence Fragmen--Lindelof function and some conditions of quasi-analyticity. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 97-108. http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a11/