Щхе existence Fragmen--Lindelof function and some conditions of quasi-analyticity
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 97-108
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $E\subset\mathbb R^n$, $E=\bar E$, $\Omega=\mathbb R^{n+1}\setminus E$. Positive harmonic functions in $\Omega$ vanishing on $E$, form the cone $\mathcal P_E$. It is known, that $1\leqslant\dim\mathcal P_E\leqslant2$. It is proved, that $\int_{\mathbb R^n}\frac{\rho(x, E)}{(1+x^2)^{\frac{n+1}2}}=+\infty\Rightarrow\dim \mathcal P_E=1$ ($\rho(x, E)=\inf_{t\in E}|x-t|$). The connection between $\dim\mathcal P_E$ and the existence of a non-zero measure on $E$ whose Fourier transform vanishes pn an interval is investigated. In the case $n=1$ it is proved, that $\int_{C_E}\frac{dt}{1+|t|}+\infty\Rightarrow\dim \mathcal P_E=2$.
@article{ZNSL_1983_126_a11,
author = {P. P. Kargaev},
title = {{\CYRSHCH}{\cyrh}{\cyre} existence {Fragmen--Lindelof} function and some conditions of quasi-analyticity},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {97--108},
publisher = {mathdoc},
volume = {126},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a11/}
}
P. P. Kargaev. Щхе existence Fragmen--Lindelof function and some conditions of quasi-analyticity. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 97-108. http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a11/