Pseudocontinuation and properties of analytic functions on boundary sets of positive measure
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 88-96

Voir la notice de l'article provenant de la source Math-Net.Ru

The following analog of Fabry's theorem is proved: If a function $\mathcal F$ analytic in the polydise $\mathbb D^n$ has a very lacunary Taylor series and coincides (in a certain sense) on a set of positive measure in $\mathbb T^n$ with a function analytic in a sufficiently large subset of $(\mathbb C\setminus\bar{\mathbb D})^n$ then $\mathcal F$ is analytic in the polydisc $(r\mathbb D)^n$ with $r>1$. This implies that a nonconstant analytic function in the ball $B\subset\mathbb C^n$ with very lacunary Taylor series cannot have nontangential boundary walues with constant modulus or zero real part on a set of positive measure.
@article{ZNSL_1983_126_a10,
     author = {B. J\"oricke},
     title = {Pseudocontinuation and properties of analytic functions on boundary sets of positive measure},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {88--96},
     publisher = {mathdoc},
     volume = {126},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a10/}
}
TY  - JOUR
AU  - B. Jöricke
TI  - Pseudocontinuation and properties of analytic functions on boundary sets of positive measure
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 88
EP  - 96
VL  - 126
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a10/
LA  - ru
ID  - ZNSL_1983_126_a10
ER  - 
%0 Journal Article
%A B. Jöricke
%T Pseudocontinuation and properties of analytic functions on boundary sets of positive measure
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 88-96
%V 126
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a10/
%G ru
%F ZNSL_1983_126_a10
B. Jöricke. Pseudocontinuation and properties of analytic functions on boundary sets of positive measure. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 88-96. http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a10/