On a~class of generalized Cauchy--Riemann systems
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 15-20
Voir la notice de l'article provenant de la source Math-Net.Ru
The article deals with the fbllowing generalized Cauchy–Riemann equation
\begin{gather}
A\frac{\partial u}{\partial x}+B\frac{\partial u}{\partial y}+C\frac{\partial u}{\partial z}=0,
\end{gather}
where $A, B, C$ are constant $(k\times k)$ matrices such that the system (1) has only harmonic ($\mathbb R^k$-valued) solutions.
For such harmonic functions $u$ the Hardy class $H^p(\mathbb R^3_+)$ is defined. A connection of this class with the Hardy class $H^1(\mathbb R^2)$ defined by Е. Stein and G. Weiss is descussed.
There is obtained the following analog of the W. Rudin theorem: every compact set $E\subset\mathbb R^2$ of zero measure is an interpolation set for the space $C(\bar{\mathbb R}^3)\cap H^1(\mathbb R^3_+)$.
@article{ZNSL_1983_126_a1,
author = {Z. A. Arushanyan},
title = {On a~class of generalized {Cauchy--Riemann} systems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {15--20},
publisher = {mathdoc},
volume = {126},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a1/}
}
Z. A. Arushanyan. On a~class of generalized Cauchy--Riemann systems. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 15-20. http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a1/