On a~class of generalized Cauchy--Riemann systems
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 15-20

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with the fbllowing generalized Cauchy–Riemann equation \begin{gather} A\frac{\partial u}{\partial x}+B\frac{\partial u}{\partial y}+C\frac{\partial u}{\partial z}=0, \end{gather} where $A, B, C$ are constant $(k\times k)$ matrices such that the system (1) has only harmonic ($\mathbb R^k$-valued) solutions. For such harmonic functions $u$ the Hardy class  $H^p(\mathbb R^3_+)$ is defined. A connection of this class with the Hardy class $H^1(\mathbb R^2)$ defined by Е. Stein and G. Weiss is descussed. There is obtained the following analog of the W. Rudin theorem: every compact set $E\subset\mathbb R^2$ of zero measure is an interpolation set for the space $C(\bar{\mathbb R}^3)\cap H^1(\mathbb R^3_+)$.
@article{ZNSL_1983_126_a1,
     author = {Z. A. Arushanyan},
     title = {On a~class of generalized {Cauchy--Riemann} systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {15--20},
     publisher = {mathdoc},
     volume = {126},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a1/}
}
TY  - JOUR
AU  - Z. A. Arushanyan
TI  - On a~class of generalized Cauchy--Riemann systems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 15
EP  - 20
VL  - 126
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a1/
LA  - ru
ID  - ZNSL_1983_126_a1
ER  - 
%0 Journal Article
%A Z. A. Arushanyan
%T On a~class of generalized Cauchy--Riemann systems
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 15-20
%V 126
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a1/
%G ru
%F ZNSL_1983_126_a1
Z. A. Arushanyan. On a~class of generalized Cauchy--Riemann systems. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XII, Tome 126 (1983), pp. 15-20. http://geodesic.mathdoc.fr/item/ZNSL_1983_126_a1/