The $K$-functOr (Grothndieck group) of the infinite symmetric group.
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part V, Tome 123 (1983), pp. 126-151
Cet article a éte moissonné depuis la source Math-Net.Ru
The Grothendieck group $K_0(\sigma_\infty)$ of the group $\sigma_\infty$ of finite permutations of a countable set is described. We also discribe all semifinite characters of this group and use them to determine the cone of true $K_+^0(\sigma_\infty)$ representations.
@article{ZNSL_1983_123_a9,
author = {A. M. Vershik and S. V. Kerov},
title = {The $K${-functOr} {(Grothndieck} group) of the infinite symmetric group.},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {126--151},
year = {1983},
volume = {123},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a9/}
}
A. M. Vershik; S. V. Kerov. The $K$-functOr (Grothndieck group) of the infinite symmetric group.. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part V, Tome 123 (1983), pp. 126-151. http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a9/