The $K$-functOr (Grothndieck group) of the infinite symmetric group.
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part V, Tome 123 (1983), pp. 126-151

Voir la notice de l'article provenant de la source Math-Net.Ru

The Grothendieck group $K_0(\sigma_\infty)$ of the group $\sigma_\infty$ of finite permutations of a countable set is described. We also discribe all semifinite characters of this group and use them to determine the cone of true $K_+^0(\sigma_\infty)$ representations.
@article{ZNSL_1983_123_a9,
     author = {A. M. Vershik and S. V. Kerov},
     title = {The $K${-functOr} {(Grothndieck} group) of the infinite symmetric group.},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {126--151},
     publisher = {mathdoc},
     volume = {123},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a9/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - S. V. Kerov
TI  - The $K$-functOr (Grothndieck group) of the infinite symmetric group.
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 126
EP  - 151
VL  - 123
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a9/
LA  - ru
ID  - ZNSL_1983_123_a9
ER  - 
%0 Journal Article
%A A. M. Vershik
%A S. V. Kerov
%T The $K$-functOr (Grothndieck group) of the infinite symmetric group.
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 126-151
%V 123
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a9/
%G ru
%F ZNSL_1983_123_a9
A. M. Vershik; S. V. Kerov. The $K$-functOr (Grothndieck group) of the infinite symmetric group.. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part V, Tome 123 (1983), pp. 126-151. http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a9/