Integrable systems and Lie~superalgebras
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part V, Tome 123 (1983), pp. 92-97
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Associated to each Lie superalgebra there is a class of ordinary Lie algebras consisting of its points over Grаssmann algebras. We extend to these Lie algebras the geometrical scheme, due to M. Adler and B. Kostant, of constructing nonlinear Lax equations.
			
            
            
            
          
        
      @article{ZNSL_1983_123_a6,
     author = {D. A. Leites and M. A. Semenov-Tian-Shansky},
     title = {Integrable systems and {Lie~superalgebras}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {92--97},
     publisher = {mathdoc},
     volume = {123},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a6/}
}
                      
                      
                    D. A. Leites; M. A. Semenov-Tian-Shansky. Integrable systems and Lie~superalgebras. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part V, Tome 123 (1983), pp. 92-97. http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a6/