Conditionally positively definite functions on locally compact groups and the Levy--Khinchin formula
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part V, Tome 123 (1983), pp. 46-57
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Levy–Khinchin formula for conditionally positively definite functions on compactly generated groups is proved. The proof is based on the Choquet's theory. Some examples and applications to 1-cohomology of unitary representations of locally compact groups are considered.
			
            
            
            
          
        
      @article{ZNSL_1983_123_a2,
     author = {S. I. Karpushev},
     title = {Conditionally positively definite functions on locally compact groups and the {Levy--Khinchin} formula},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {46--57},
     publisher = {mathdoc},
     volume = {123},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a2/}
}
                      
                      
                    TY - JOUR AU - S. I. Karpushev TI - Conditionally positively definite functions on locally compact groups and the Levy--Khinchin formula JO - Zapiski Nauchnykh Seminarov POMI PY - 1983 SP - 46 EP - 57 VL - 123 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a2/ LA - ru ID - ZNSL_1983_123_a2 ER -
S. I. Karpushev. Conditionally positively definite functions on locally compact groups and the Levy--Khinchin formula. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part V, Tome 123 (1983), pp. 46-57. http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a2/