An application of integral geometry to linear inequality theory
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part V, Tome 123 (1983), pp. 208-220

Voir la notice de l'article provenant de la source Math-Net.Ru

A. M. Versik suggested to identify Linear Programming Problems space with the corresponding Grassmann manifold. A probablility measure is defined on the manifold. The average number of permissible bases and the measures of the problems with finite and infinite extreme are calculated.
@article{ZNSL_1983_123_a16,
     author = {P. V. Sporyshev},
     title = {An application of integral geometry to linear inequality theory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {208--220},
     publisher = {mathdoc},
     volume = {123},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a16/}
}
TY  - JOUR
AU  - P. V. Sporyshev
TI  - An application of integral geometry to linear inequality theory
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 208
EP  - 220
VL  - 123
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a16/
LA  - ru
ID  - ZNSL_1983_123_a16
ER  - 
%0 Journal Article
%A P. V. Sporyshev
%T An application of integral geometry to linear inequality theory
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 208-220
%V 123
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a16/
%G ru
%F ZNSL_1983_123_a16
P. V. Sporyshev. An application of integral geometry to linear inequality theory. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part V, Tome 123 (1983), pp. 208-220. http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a16/