On realizability of combinatorial types of convex polytopes over number fields
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part V, Tome 123 (1983), pp. 203-207 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that the minimal subfield of the reals over which all real combinatorial types of convex polytopes may be realized is the field of all real algebrais numbers.
@article{ZNSL_1983_123_a15,
     author = {N. E. Mnev},
     title = {On realizability of combinatorial types of convex polytopes over number fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {203--207},
     year = {1983},
     volume = {123},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a15/}
}
TY  - JOUR
AU  - N. E. Mnev
TI  - On realizability of combinatorial types of convex polytopes over number fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 203
EP  - 207
VL  - 123
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a15/
LA  - ru
ID  - ZNSL_1983_123_a15
ER  - 
%0 Journal Article
%A N. E. Mnev
%T On realizability of combinatorial types of convex polytopes over number fields
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 203-207
%V 123
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a15/
%G ru
%F ZNSL_1983_123_a15
N. E. Mnev. On realizability of combinatorial types of convex polytopes over number fields. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part V, Tome 123 (1983), pp. 203-207. http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a15/