On realizability of combinatorial types of convex polytopes over number fields
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part V, Tome 123 (1983), pp. 203-207
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that the minimal subfield of the reals over which all real combinatorial types of convex polytopes may be realized is the field of all real algebrais numbers.
			
            
            
            
          
        
      @article{ZNSL_1983_123_a15,
     author = {N. E. Mnev},
     title = {On realizability of combinatorial types of convex polytopes over number fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {203--207},
     publisher = {mathdoc},
     volume = {123},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a15/}
}
                      
                      
                    N. E. Mnev. On realizability of combinatorial types of convex polytopes over number fields. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part V, Tome 123 (1983), pp. 203-207. http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a15/