On realizability of combinatorial types of convex polytopes over number fields
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part V, Tome 123 (1983), pp. 203-207
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that the minimal subfield of the reals over which all real combinatorial types of convex polytopes may be realized is the field of all real algebrais numbers.
@article{ZNSL_1983_123_a15,
author = {N. E. Mnev},
title = {On realizability of combinatorial types of convex polytopes over number fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {203--207},
year = {1983},
volume = {123},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a15/}
}
N. E. Mnev. On realizability of combinatorial types of convex polytopes over number fields. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part V, Tome 123 (1983), pp. 203-207. http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a15/