On $W$-graphs of the symmetric group representations
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part V, Tome 123 (1983), pp. 190-202

Voir la notice de l'article provenant de la source Math-Net.Ru

$W$-graphes are closely related to the Kazhdan–Lusztig polynomials now extensively used in representation theory of semisimple groups. For the symmetric group $W=\sigma_n$ description of Kazhdan–Lusztig polynomials for the grassmanians and of the related $\sigma_n$-graphs is known. The aim of this paper is to describe more general $\sigma_n$-graphs, e. g. the graphs of hook diagrams and all irreducible $\sigma_n$-graphs for $n\leqslant6$.
@article{ZNSL_1983_123_a14,
     author = {S. V. Kerov},
     title = {On $W$-graphs of the symmetric group representations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {190--202},
     publisher = {mathdoc},
     volume = {123},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a14/}
}
TY  - JOUR
AU  - S. V. Kerov
TI  - On $W$-graphs of the symmetric group representations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 190
EP  - 202
VL  - 123
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a14/
LA  - ru
ID  - ZNSL_1983_123_a14
ER  - 
%0 Journal Article
%A S. V. Kerov
%T On $W$-graphs of the symmetric group representations
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 190-202
%V 123
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a14/
%G ru
%F ZNSL_1983_123_a14
S. V. Kerov. On $W$-graphs of the symmetric group representations. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part V, Tome 123 (1983), pp. 190-202. http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a14/