Numerical data on the typical dimensions of irreducible sepresentations of symmetric groups
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part V, Tome 123 (1983), pp. 152-154
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We give numerical evidence in favour of hypothesis on the asympotic probabilities equidistribution of the typical representations of symmetric groups. An estimate for the entropy of the limiting Plancherel measure is presented.
			
            
            
            
          
        
      @article{ZNSL_1983_123_a10,
     author = {A. M. Vershik and A. B. Gribov and S. V. Kerov},
     title = {Numerical data on the typical dimensions of irreducible sepresentations of symmetric groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {152--154},
     publisher = {mathdoc},
     volume = {123},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a10/}
}
                      
                      
                    TY - JOUR AU - A. M. Vershik AU - A. B. Gribov AU - S. V. Kerov TI - Numerical data on the typical dimensions of irreducible sepresentations of symmetric groups JO - Zapiski Nauchnykh Seminarov POMI PY - 1983 SP - 152 EP - 154 VL - 123 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a10/ LA - ru ID - ZNSL_1983_123_a10 ER -
%0 Journal Article %A A. M. Vershik %A A. B. Gribov %A S. V. Kerov %T Numerical data on the typical dimensions of irreducible sepresentations of symmetric groups %J Zapiski Nauchnykh Seminarov POMI %D 1983 %P 152-154 %V 123 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a10/ %G ru %F ZNSL_1983_123_a10
A. M. Vershik; A. B. Gribov; S. V. Kerov. Numerical data on the typical dimensions of irreducible sepresentations of symmetric groups. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part V, Tome 123 (1983), pp. 152-154. http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a10/