Infinite dimensional metagonal and metaplictie groups I. The general notions and the metagonal group
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part V, Tome 123 (1983), pp. 3-35

Voir la notice de l'article provenant de la source Math-Net.Ru

She groups in question are central extensions by $S^1$ of groups of orthogonal and symplectic operators with Hilbert-Schmidt antilinear part acting in a Hilbert space. A thorough study of the corresponding 2-coeycles on their Lie algebras is presented. A limiting procedure relating the infinite dimensional groups with the corresponding finite dimensional ones is exhibited. Central extensions in the former case are shown to be nontrivial even on the topological level. Possible applications include unified models of the basic moduli for the Kac–Moody Lie algebras.
@article{ZNSL_1983_123_a0,
     author = {A. M. Vershik},
     title = {Infinite dimensional metagonal and metaplictie groups {I.} {The} general notions and the metagonal group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {3--35},
     publisher = {mathdoc},
     volume = {123},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a0/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - Infinite dimensional metagonal and metaplictie groups I. The general notions and the metagonal group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1983
SP  - 3
EP  - 35
VL  - 123
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a0/
LA  - ru
ID  - ZNSL_1983_123_a0
ER  - 
%0 Journal Article
%A A. M. Vershik
%T Infinite dimensional metagonal and metaplictie groups I. The general notions and the metagonal group
%J Zapiski Nauchnykh Seminarov POMI
%D 1983
%P 3-35
%V 123
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a0/
%G ru
%F ZNSL_1983_123_a0
A. M. Vershik. Infinite dimensional metagonal and metaplictie groups I. The general notions and the metagonal group. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part V, Tome 123 (1983), pp. 3-35. http://geodesic.mathdoc.fr/item/ZNSL_1983_123_a0/