Quadratic forms of closed manifolds
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part IV, Tome 122 (1982), pp. 104-108

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper is shown that for any integer unimodular quadratic form and $n=8k+4$ $(k\geqslant1)$ there exists a smooth closed $n$-dimensional manifold with this form. The proof is based on using “plumbing” for construction of smooth closed $3$-connected eight-dimensional manifolds with a given form.
@article{ZNSL_1982_122_a8,
     author = {O. A. Ivanov},
     title = {Quadratic forms of closed manifolds},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {104--108},
     publisher = {mathdoc},
     volume = {122},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_122_a8/}
}
TY  - JOUR
AU  - O. A. Ivanov
TI  - Quadratic forms of closed manifolds
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 104
EP  - 108
VL  - 122
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_122_a8/
LA  - ru
ID  - ZNSL_1982_122_a8
ER  - 
%0 Journal Article
%A O. A. Ivanov
%T Quadratic forms of closed manifolds
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 104-108
%V 122
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_122_a8/
%G ru
%F ZNSL_1982_122_a8
O. A. Ivanov. Quadratic forms of closed manifolds. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part IV, Tome 122 (1982), pp. 104-108. http://geodesic.mathdoc.fr/item/ZNSL_1982_122_a8/