Puchsian groups and small eigenvalues of the Laplace operator
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part IV, Tome 122 (1982), pp. 24-29
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $H$ be the Lobachevsky plane and $\Gamma$ be an arbitrary Puchsian group of the first kind. We give upper bounds for the total number and for the multiplicities of small eigenvalues (i. e. such in $[0,\frac14]$) of the Laplace operator on $H/\Gamma$ in which only topological invariants occur.
@article{ZNSL_1982_122_a3,
author = {P. G. Zograf},
title = {Puchsian groups and small eigenvalues of the {Laplace} operator},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {24--29},
publisher = {mathdoc},
volume = {122},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_122_a3/}
}
P. G. Zograf. Puchsian groups and small eigenvalues of the Laplace operator. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part IV, Tome 122 (1982), pp. 24-29. http://geodesic.mathdoc.fr/item/ZNSL_1982_122_a3/