$M$-curves of degree $10$
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part IV, Tome 122 (1982), pp. 146-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The known restrictions on mutual position of ovals of nonsingular algebraic curve in the real projective plane in the case of curves of degree $10$ with maximal number of components are satisfied by about $70000$ schemes of position. The set of the schemes is naturally subdivided into $18$ families. The main result of the paper is the following: in each family there exist representatives which are realized by curves.
@article{ZNSL_1982_122_a14,
     author = {Yu. S. Chislenko},
     title = {$M$-curves of degree~$10$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {146--161},
     year = {1982},
     volume = {122},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_122_a14/}
}
TY  - JOUR
AU  - Yu. S. Chislenko
TI  - $M$-curves of degree $10$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 146
EP  - 161
VL  - 122
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_122_a14/
LA  - ru
ID  - ZNSL_1982_122_a14
ER  - 
%0 Journal Article
%A Yu. S. Chislenko
%T $M$-curves of degree $10$
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 146-161
%V 122
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_122_a14/
%G ru
%F ZNSL_1982_122_a14
Yu. S. Chislenko. $M$-curves of degree $10$. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part IV, Tome 122 (1982), pp. 146-161. http://geodesic.mathdoc.fr/item/ZNSL_1982_122_a14/