An estimation of deviation of fixed points from a~nonconvex set
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part IV, Tome 122 (1982), pp. 13-16

Voir la notice de l'article provenant de la source Math-Net.Ru

In. this notes the estimation $\delta(F_i\times f, A)\leqslant2^{-\frac12}d(A)$, is given, where $A$ is an nonvoid closed bounded nonconvex set in a Hilbert space $H$, $f\colon\overline{\operatorname{co}}A\to H$ is a nonexpansive mapping and $f(\partial A)\subset A$, $\delta(F_i\times f, A)$ is the deviation of the fixed point set of a mapping $f$ from the set $A$, $d(A)$ is the diameter of the set $A$, $\partial A$ is the boundary of the set $A$ in $H$.
@article{ZNSL_1982_122_a1,
     author = {N. M. Gulevich},
     title = {An estimation of deviation of fixed points from a~nonconvex set},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {13--16},
     publisher = {mathdoc},
     volume = {122},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_122_a1/}
}
TY  - JOUR
AU  - N. M. Gulevich
TI  - An estimation of deviation of fixed points from a~nonconvex set
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 13
EP  - 16
VL  - 122
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_122_a1/
LA  - ru
ID  - ZNSL_1982_122_a1
ER  - 
%0 Journal Article
%A N. M. Gulevich
%T An estimation of deviation of fixed points from a~nonconvex set
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 13-16
%V 122
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_122_a1/
%G ru
%F ZNSL_1982_122_a1
N. M. Gulevich. An estimation of deviation of fixed points from a~nonconvex set. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part IV, Tome 122 (1982), pp. 13-16. http://geodesic.mathdoc.fr/item/ZNSL_1982_122_a1/