Modular forms and representations of symmetric groups
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 74-85
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We give an interpretation of the coefficients of some modular forms in terms of modular representations of symmetric groups. Using this we can obtain asymptotic formulas for the number of blocks of the symmetric group $S_n$ over a field of characteristic $p$ for $n\to\infty$. For $p\leqslant7$ we give simple explicit formulas for the number of blocks of defect zero. The study of the modular forms leads to interesting identities involving the Dedekind $n$-function.
			
            
            
            
          
        
      @article{ZNSL_1982_116_a7,
     author = {A. A. Klyachko},
     title = {Modular forms and representations of symmetric groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {74--85},
     publisher = {mathdoc},
     volume = {116},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a7/}
}
                      
                      
                    A. A. Klyachko. Modular forms and representations of symmetric groups. Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 74-85. http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a7/