Modular forms and representations of symmetric groups
Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 74-85

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an interpretation of the coefficients of some modular forms in terms of modular representations of symmetric groups. Using this we can obtain asymptotic formulas for the number of blocks of the symmetric group $S_n$ over a field of characteristic $p$ for $n\to\infty$. For $p\leqslant7$ we give simple explicit formulas for the number of blocks of defect zero. The study of the modular forms leads to interesting identities involving the Dedekind $n$-function.
@article{ZNSL_1982_116_a7,
     author = {A. A. Klyachko},
     title = {Modular forms and representations of symmetric groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {74--85},
     publisher = {mathdoc},
     volume = {116},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a7/}
}
TY  - JOUR
AU  - A. A. Klyachko
TI  - Modular forms and representations of symmetric groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 74
EP  - 85
VL  - 116
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a7/
LA  - ru
ID  - ZNSL_1982_116_a7
ER  - 
%0 Journal Article
%A A. A. Klyachko
%T Modular forms and representations of symmetric groups
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 74-85
%V 116
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a7/
%G ru
%F ZNSL_1982_116_a7
A. A. Klyachko. Modular forms and representations of symmetric groups. Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 74-85. http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a7/