Subgroups of a finite group whose algebra of invariants is a complete intersection
Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 63-67
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $G$ be a finite subgroup of $GL(V)$, where $V$ is a finite-dimensional vector space over the field $K$ and $\operatorname{char}K\nmid|G|$. We show that if the algebra of invariants $K(V)^G$ of the symmetric algebra of $V$ is a complete intersection then $K(V)^H$ is also a complete intersection for all subgroups $H$ of $G$ such that $H=\{\sigma\in G|\sigma(v)=v\text{\rm{ for all }}v\in V^H\}$.
@article{ZNSL_1982_116_a5,
author = {N. L. Gordeev},
title = {Subgroups of a finite group whose algebra of invariants is a complete intersection},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {63--67},
year = {1982},
volume = {116},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a5/}
}
N. L. Gordeev. Subgroups of a finite group whose algebra of invariants is a complete intersection. Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 63-67. http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a5/