Subgroups of a finite group whose algebra of invariants is a complete intersection
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 63-67
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $G$ be a finite subgroup of $GL(V)$, where $V$ is a finite-dimensional vector space over the field $K$ and $\operatorname{char}K\nmid|G|$. We show that if the algebra of invariants $K(V)^G$ of the symmetric algebra of $V$ is a complete intersection then $K(V)^H$ is also a complete intersection for all subgroups $H$ of $G$ such that $H=\{\sigma\in G|\sigma(v)=v\text{\rm{ for all }}v\in V^H\}$.
			
            
            
            
          
        
      @article{ZNSL_1982_116_a5,
     author = {N. L. Gordeev},
     title = {Subgroups of a finite group whose algebra of invariants is a complete intersection},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {63--67},
     publisher = {mathdoc},
     volume = {116},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a5/}
}
                      
                      
                    N. L. Gordeev. Subgroups of a finite group whose algebra of invariants is a complete intersection. Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 63-67. http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a5/