Even unimodular Euclidean lattices in dimension 32
Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 44-55
Cet article a éte moissonné depuis la source Math-Net.Ru
We study even unimodular Euclidean lattices in dimension 32 with small root systems. It is shown that such lattices are generated by the vectors $\nu$ with $(\nu,\nu)\leqslant4$. For lattices without roots we obtain special properties of the configuration of minimal vectors which are reminiscent of strongly regular graphs.
@article{ZNSL_1982_116_a3,
author = {B. B. Venkov},
title = {Even unimodular {Euclidean} lattices in dimension~32},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {44--55},
year = {1982},
volume = {116},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a3/}
}
B. B. Venkov. Even unimodular Euclidean lattices in dimension 32. Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 44-55. http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a3/