Even unimodular Euclidean lattices in dimension~32
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 44-55
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study even unimodular Euclidean lattices in dimension 32 with small root systems. It is shown that such lattices are generated by the vectors $\nu$ with $(\nu,\nu)\leqslant4$. For lattices without roots we obtain special properties of the configuration of minimal vectors which are reminiscent of strongly regular graphs.
			
            
            
            
          
        
      @article{ZNSL_1982_116_a3,
     author = {B. B. Venkov},
     title = {Even unimodular {Euclidean} lattices in dimension~32},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {44--55},
     publisher = {mathdoc},
     volume = {116},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a3/}
}
                      
                      
                    B. B. Venkov. Even unimodular Euclidean lattices in dimension~32. Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 44-55. http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a3/