Even unimodular Euclidean lattices in dimension~32
Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 44-55

Voir la notice de l'article provenant de la source Math-Net.Ru

We study even unimodular Euclidean lattices in dimension 32 with small root systems. It is shown that such lattices are generated by the vectors $\nu$ with $(\nu,\nu)\leqslant4$. For lattices without roots we obtain special properties of the configuration of minimal vectors which are reminiscent of strongly regular graphs.
@article{ZNSL_1982_116_a3,
     author = {B. B. Venkov},
     title = {Even unimodular {Euclidean} lattices in dimension~32},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {44--55},
     publisher = {mathdoc},
     volume = {116},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a3/}
}
TY  - JOUR
AU  - B. B. Venkov
TI  - Even unimodular Euclidean lattices in dimension~32
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1982
SP  - 44
EP  - 55
VL  - 116
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a3/
LA  - ru
ID  - ZNSL_1982_116_a3
ER  - 
%0 Journal Article
%A B. B. Venkov
%T Even unimodular Euclidean lattices in dimension~32
%J Zapiski Nauchnykh Seminarov POMI
%D 1982
%P 44-55
%V 116
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a3/
%G ru
%F ZNSL_1982_116_a3
B. B. Venkov. Even unimodular Euclidean lattices in dimension~32. Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 44-55. http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a3/