Even unimodular Euclidean lattices in dimension 32
Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 44-55
Voir la notice du chapitre de livre
We study even unimodular Euclidean lattices in dimension 32 with small root systems. It is shown that such lattices are generated by the vectors $\nu$ with $(\nu,\nu)\leqslant4$. For lattices without roots we obtain special properties of the configuration of minimal vectors which are reminiscent of strongly regular graphs.
@article{ZNSL_1982_116_a3,
author = {B. B. Venkov},
title = {Even unimodular {Euclidean} lattices in dimension~32},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {44--55},
year = {1982},
volume = {116},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a3/}
}
B. B. Venkov. Even unimodular Euclidean lattices in dimension 32. Zapiski Nauchnykh Seminarov POMI, Integral lattices and finite linear groups, Tome 116 (1982), pp. 44-55. http://geodesic.mathdoc.fr/item/ZNSL_1982_116_a3/